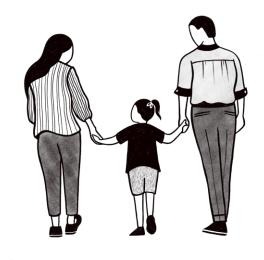
//I Foundations

What Works Centre for Children & Families

IMPROVING THE HOME LEARNING ENVIRONMENT

Vita Bax


Evidence and Evaluation Officer

FOUNDATIONS

Foundations is the UK's What Works Centre for Children & Families.

We're generating and championing the actionable evidence that improves family support services, so more vulnerable children have the foundational relationships they need to thrive in life.

VISION

Vulnerable children have the foundational relationships they need to thrive in life.

MISSION

Generating and championing actionable evidence that improves services to support family relationships.

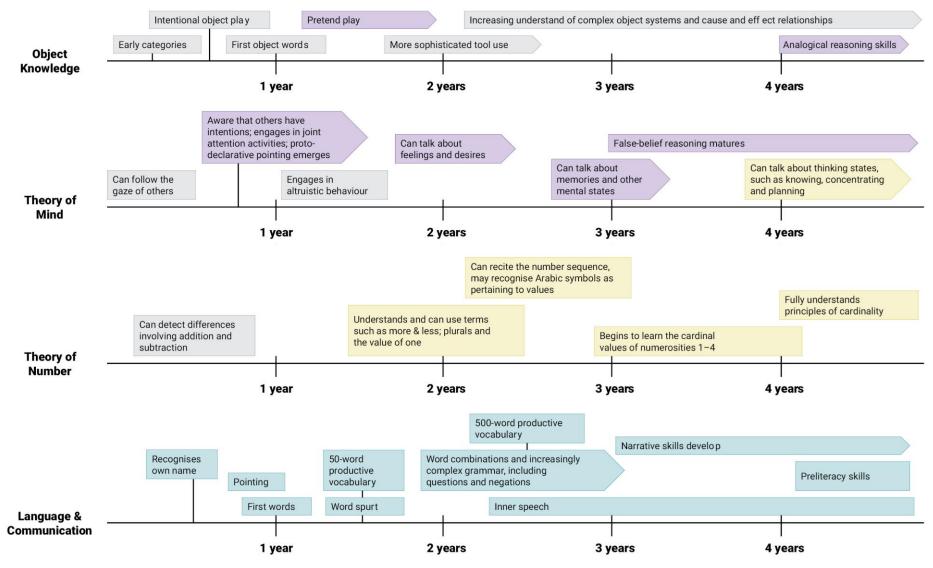
AIMS FOR THE WEBINAR

- Reflect on the foundations of early learning and key risks to children's development
- Learn how a good Home Learning Environment can support language development and early learning
- Discuss the key features of a good Home Learning Environment
- Understand how evidence-based interventions can effectively support children's early learning at home

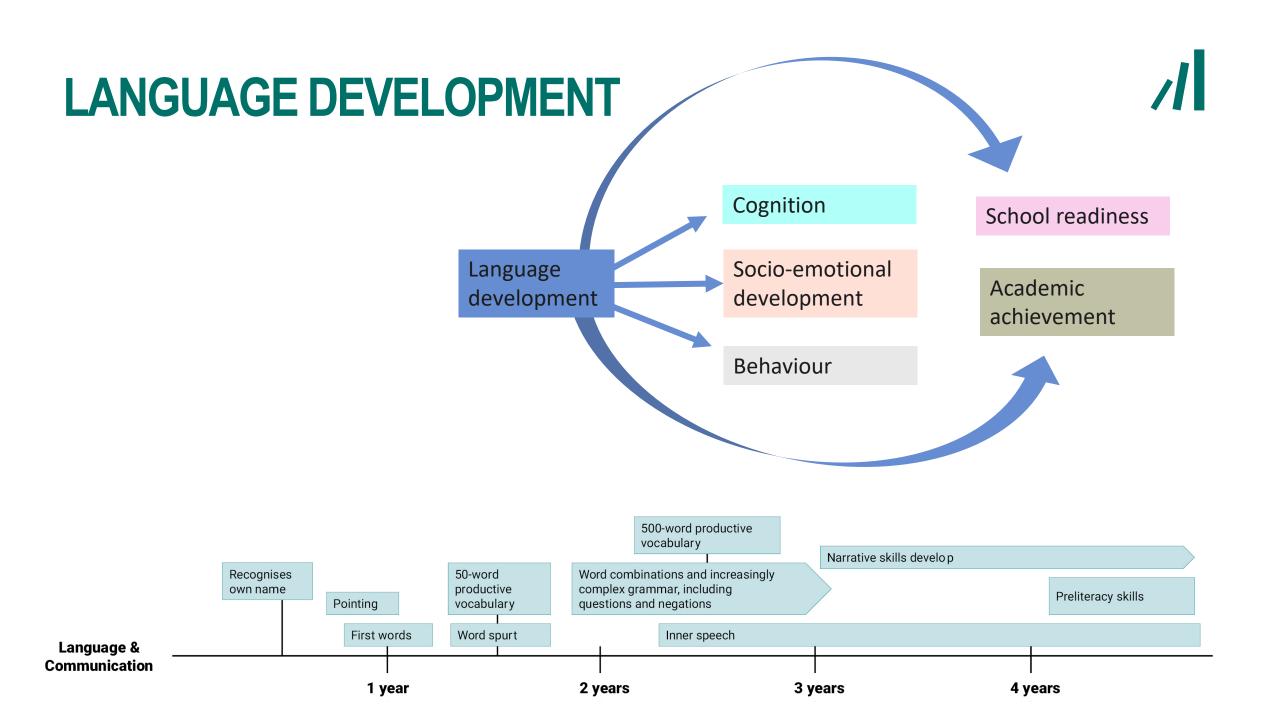
EXPECTATIONS FOR THE WEBINAR

- Use the chat and put up hands to ask questions.
- Will be recorded slides and presenter only (no recording of chat).
- Slides and recording will be shared afterwards (available online at What Works).

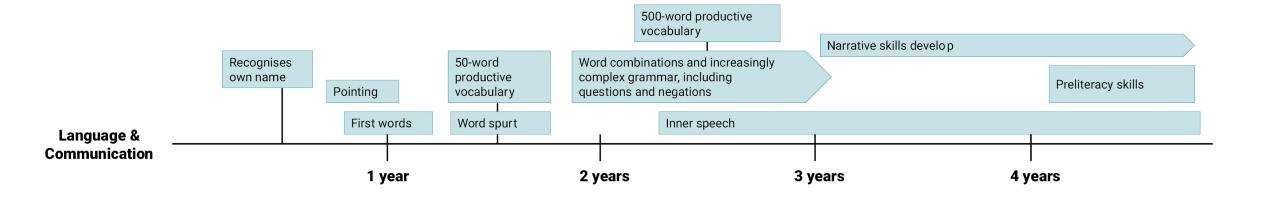
LIGHT BULB CHECK:


HOW FAMILIAR ARE
YOU WITH THE IDEA
OF THE HOME
LEARNING
ENVIRONMENT?

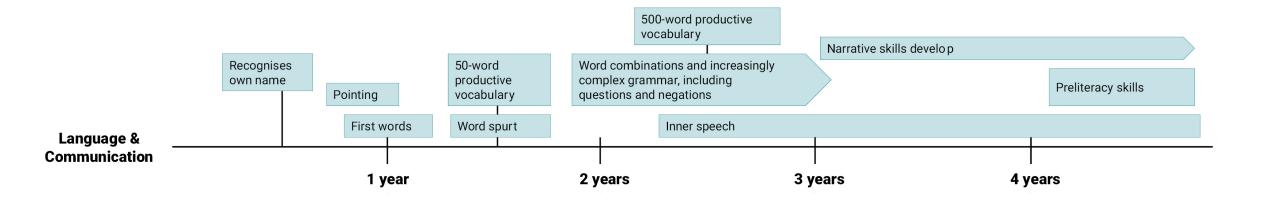
MILESTONES IN THE DEVELOPMENT OF CHILDREN'S KEY COMPETENCIES DURING THE FIRST 5 YEARS

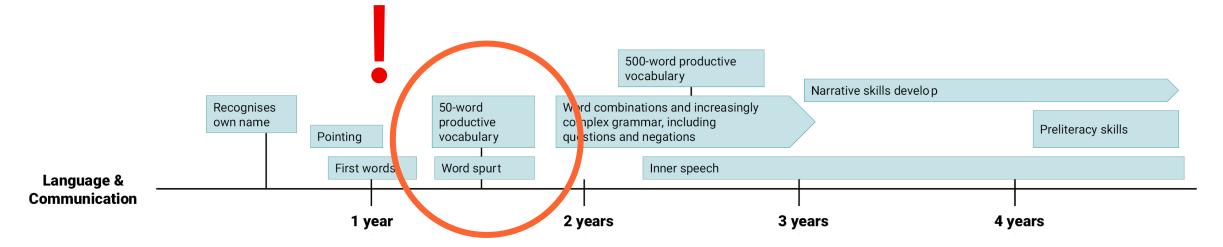

HOW IMPORTANT IS EARLY CHILD DEVELOPMENT?

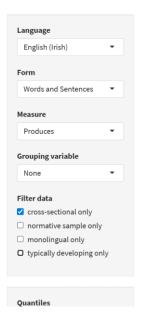
The learning capabilities acquired during the first five years of life provide the foundation for all children's future learning.

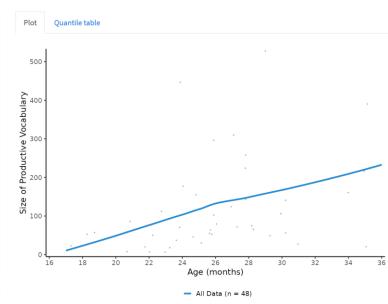

Before children start school aged 5, the majority of children will have:

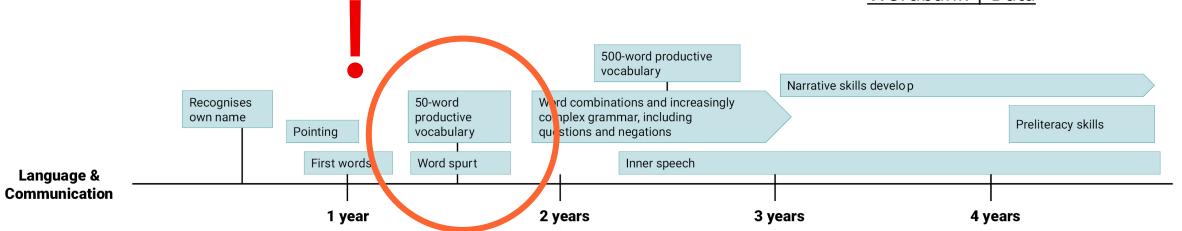
- a vocabulary of over 10,000 words,
- the ability to listen and follow directions
- the ability to understand numerical values up to 10.



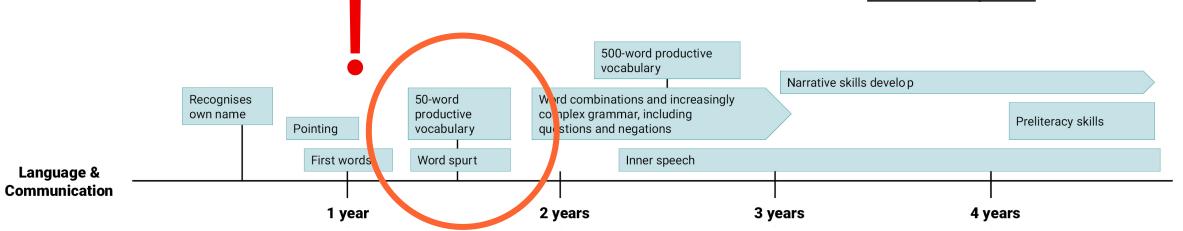


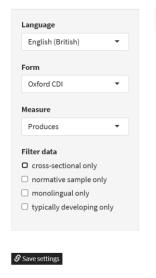


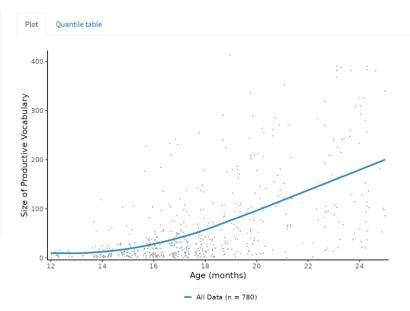


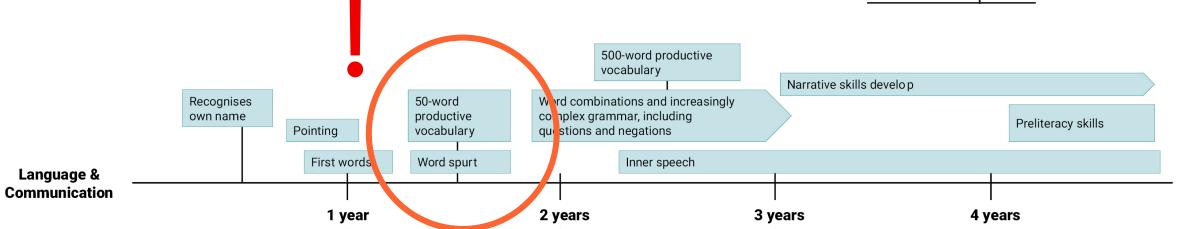


Wordbank | Data

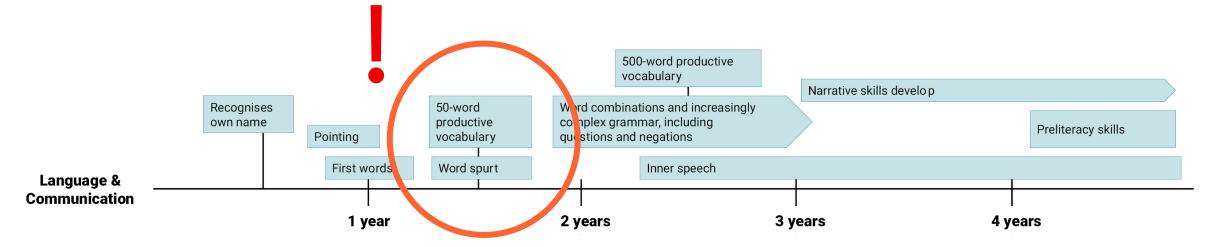



Wordbank | Data





Wordbank | Data



PROMOTING LANGUAGE DEVELOPMENT

Supporting Factors

Family & Birth Order

& Being a firstborn

Caregiver Interaction

- Hearing high levels of infant-directed speech
- Frequent responsive conversations
- Joint attention activities
- Shared book-reading

Environment & Education

- Higher family socioeconomic background
- Childcare from one adult in first two years
- **Enriching preschool education**

A Risk Factors

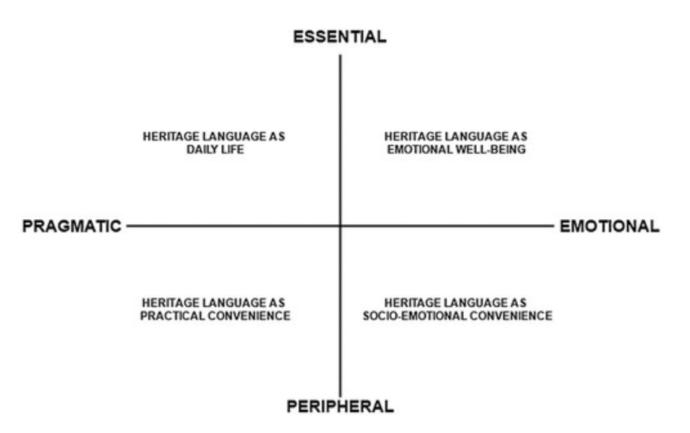
Parental Factors

- Young or teenage mother
- High levels of parental stress or mental health problems
- ◆ Low parental educational qualifications

Family Structure

& High number of siblings

MULTILINGUAL DEVELOPMENT



- 15% of the population of Ireland are multilingual, speaking a language other than English or Irish at home
- 40% of people speak some Irish
- Multilingualism is not just about language competence, but also about identity and heritage

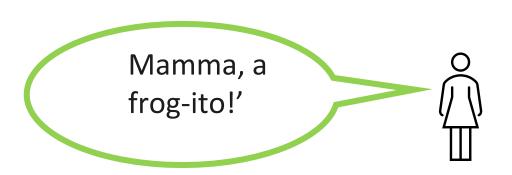
MULTILINGUAL DEVELOPMENT

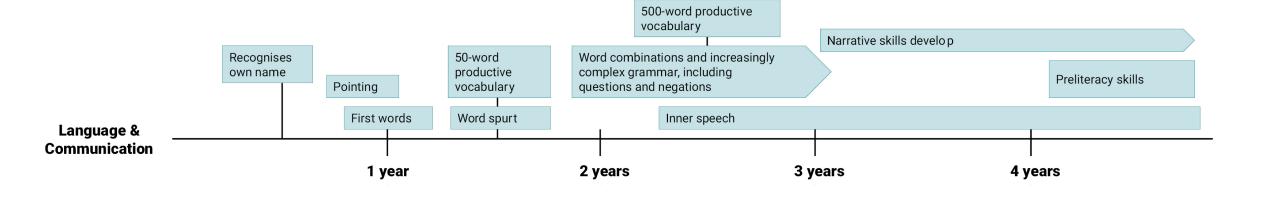
Figure 1. A conceptual framework of heritage language identities.

We Speak Multi

Social/political ideologies

Language ideologies


Socioeconomic factors


Little, S. (2020). Whose heritage? What inheritance?: Conceptualising family language identities. *International Journal of Bilingual Education and Bilingualism*, 23(2), 198-212.

MULTILINGUAL DEVELOPMENT

- Simultaneous vs sequential development
- Similarities and differences with monolingual development
- At a broad level, major milestones are passed at the same time
- Enormous variation in multilinguals, like monolinguals

WHAT IS THE HOME LEARNING ENVIRONMENT?

The physical characteristics of the home, and the quality of the implicit and explicit learning support which children receive from their caregivers.

The home learning environment is vital for developing children's school readiness.

We know are specific activities and ways of communicating which can help support a

child's early language development:

Responsiveness

- Warm interactions
- Stimulating activities

WHAT IS THE HOME LEARNING ENVIRONMENT?

- Play-based activities that allow children to physically explore their environment.
- Play-based activities that help children to learn the **names of objects** and engage in **symbolic play**.
- Conversations with adults that follow the child's lead and are specific to the child's interests.
- Enriching **educational materials** which include arts and crafts supplies and educational matching games.
- Regular outings to libraries, museums, parks and gardens to provide children with opportunities to learn about the physical world.

- Activities that support **preliteracy skills** such as **shared book reading**.
- Activities which encourage children to count out objects.
- Conversations about small and large number values.
- Activities that develop knowledge of the counting principles and Arabic numerals.
- Activities which encourage understanding of the perspectives of others through stories and role-play activities.
- Conversations and materials which facilitate children's awareness of the thoughts and feelings of others.

IMPORTANCE OF THE HOME LEARNING ENVIRONMENT

Parenting practices such as **reading** to children, using **complex language**, **responsiveness**, and **warmth** in interactions are all associated with better developmental outcomes:

- The HLE supports the emergence of pre-academic skills that are stable into early adolescence.
- The HLE may act as a protective influence, reducing the risk of poor attainment due to other factors.



Bradley, R. (2002). Environment and Parenting. In M. Bornstein (Ed.) Handbook of parenting, 2nd Ed. Hillsdale, N. J.: Lawrence Erlbaum Associates

Melhuish, E., et al. (2008) Effects of the Home Learning Environment and Preschool Center Experience upon Literacy and Numeracy Development in Early Primary School. Journal of Social Issues, Vol. 64, No. 1, pp. 95--114

ZONE OF PROXIMAL DEVELOPMENT

Parental support begins with a **nutrient-rich ante-natal environment**, then by engaging with the baby and by keeping them well-fed and calm.

As babies get older, parents shape their babies learning through **scaffolding**.

Scaffolding: Adult teaching behaviours which occur within the child's proximal zone of development.

Zone of proximal development (ZPD): The gap between what a child currently understands and what they are capable of understanding with others' support.

PARENTAL SCAFFOLDING FOR LANGUAGE

Ability to discriminate differences in phonetic sounds

Ability to distinguish the family's language(s) from other languages Evidence suggests that babies can distinguish phonetic variation in human speech at birth.

Some of the earliest 'learning' is the ability to recognise the phonetic patterns of their mother's language, which occurs in the first three weeks of life.

Parental scaffolding is most successful when it is **specific to the baby's individual ZPD**. Most parents are good at understanding their infant's ZPD and naturally behave in a way that supports optimal learning within it. For example, by using '**infant directed speech**' (IDS).

Parents who are sensitive to their infant's ZPD modify their behaviour accordingly as the child grows older and their ZPD shifts.

25

THE CENTRE FOR EARLY CHILDHOOD: SCAFFOLDING EXPLAINER

WHAT FACTORS ARE **PREVENTING** PARENTS FROM **OFFERING A SUPPORTIVE HOME LEARNING ENVIRONMENT TO** THEIR CHILDREN?

FAMILY STRESSORS AND LOW INCOME

There are multiple pathways by which low family income can negatively impact children.

- 1) Resource model
- 2) Family stress model
- 3) Lower parental educational attainment

FAMILY STRESSORS AND LOW INCOME

There are multiple pathways by which low family income can negatively impact children.

- 1) Resource model
- 2) Family stress model

3) Lower parental educational attainment

Parent's educational attainment

Parent's use of vocabulary

Child's development of vocabulary Communication skills

Reasoning capabilities

Awareness of thoughts and emotions

SCREEN TIME AND TECHNOLOGY USE IN THE HOME //

Of children aged 3 - 5 years old:

- 19% have their own mobile phone.
- 56% use messaging sites/apps.
- 91% use video-sharing platforms.

- 37% use social media.
- 60% have their own social media profile.

WHO SCREEN TIME **GUIDELINES (2019)**

UNDER 1: NO SCREEN TIME IS RECOMMENDED

1 YEAR OLD: NO **SEDENTARY SCREEN TIME RECOMMENDED**

2 – 4 YEARS OLD: NO MORE THAN 1 HOUR OF SCREEN TIME RECOMMENDED, AND LESS IS BETTER.

- Just over two in ten (23%) parents of 3-12s see the benefits to their child of using social media outweighing the risks, compared to 39% of parents of 13-17s.
- One third (33%) of parents of 3-12s find it hard to control their child's screen time compared to half (50%) of parents of 13-17s.
- 59% of parents of children aged 3 – 5 report that they sit beside their child to watch or help them while they are online.

WHO SCREEN TIME GUIDELINES (2019)

UNDER 1: NO SCREEN TIME IS RECOMMENDED

1 YEAR OLD: NO SEDENTARY SCREEN TIME RECOMMENDED

2 – 4 YEARS OLD: NO MORE THAN 1 HOUR OF SCREEN TIME RECOMMENDED, AND LESS IS BETTER.

SYSTEMATIC REVIEW EVIDENCE

Lawer shild Higher shild

ce	r (95% CI)	Lower child language	Higher child language	Weight,
Duration of screen time				
van den Heuvel et al,66 2019	-0.23 (-0.29 to -0.16)			3.90
Moon et al,56 2018	-0.05 (-0.36 to 0.27)			1.25
Taylor et al cohort 1,64 2018	-0.03 (-0.30 to 0.25)	_		1.52
Taylor et al cohort 2,64 2018	-0.02 (-0.33 to 0.30)			1.25
Lee et al,7 2017	0.02 (-0.03 to 0.06)			4.09
Yang et al, 14 2017	-0.08 (-0.26 to 0.10)	-		2.44
Rosenqvist et al,61 2016	-0.15 (-0.25 to -0.05)			3.47
Blankson et al,15 2015	-0.28 (-0.40 to -0.16)			3.08
Byeon et al, 46 2015	-0.08 (-0.12 to -0.03)			4.08
Lin et al, ⁵¹ 2015	-0.26 (-0.41 to -0.11)			2.68
McKean et al, 54 2015	-0.06 (-0.13 to 0.01)			3.84
Alloway et al, 42 2014	-0.13 (-0.47 to 0.24)	_		1.01
Castles et al,47 2013	-0.14 (-0.19 to -0.09)			4.05
Duch et al,45 2013	-0.31 (-0.50 to -0.08)			1.90
Hudon et al, 49 2013	-0.26 (-0.45 to -0.05)	-		2.07
Linebarger et al,52 2013	-0.02 (-0.20 to 0.16)	-		2.46
Pagani et al, ⁵⁸ 2013	-0.13 (-0.17 to -0.09)			4.10
Bittman et al cohort 1,45 2011	-0.03 (-0.07 to 0.01)			4.12
Bittman et al cohort 2,45 2011	-0.02 (-0.06 to 0.02)		-	4.12
Barr et al, ⁴⁴ 2010	-0.15 (-0.40 to 0.13)	_		1.56
Mendelsohn et al,55 2010	-0.19 (-0.31 to -0.07)			3.17
Richert et al, ⁶⁰ 2010	-0.50 (-0.64 to -0.32)	-		2.11
Tomopoulos et al,65 2010	-0.16 (-0.28 to -0.04)			3.19
Ruangdaraganon et al,8 2009	-0.18 (-0.46 to 0.13)	_		1.30
Schmidt et al,62 2009	-0.02 (-0.09 to 0.04)	-	-	3.89
Zimmerman et al,68 2009	-0.12 (-0.23 to 0.00)			3.24
Chonchaiya et al,6 2008	-0.35 (-0.48 to -0.21)			2.78
Zimmerman et al cohort 1,5 2007	0.05 (-0.06 to 0.15)	-	•	3.41
Zimmerman et al cohort 2,5 2007	0.15 (0.05 to 0.24)			3.48
Linebarger et al, 13 2005	-0.27 (-0.51 to 0.01)	_		1.52
Patterson et al, ⁵⁹ 2002	0.23 (-0.02 to 0.45)			1.76
Wright et al cohort 1,67 2001	-0.28 (-0.46 to -0.07)			2.13
Wright et al cohort 2,67 2001	-0.10 (-0.30 to 0.11)	-		2.16
Allen et al, ⁴¹ 1992	-0.14 (-0.40 to 0.14)	_		1.56
Arraf et al, ⁴³ 1990	-0.58 (-0.67 to -0.47)			2.83
Selnow et al, 63 1982	-0.17 (-0.36 to 0.04)	_		2.17
Levin et al, ⁵⁰ 1978	-0.09 (-0.34 to 0.17)			1.69
Nelson et al, ⁵⁷ 1973	-0.50 (-0.78 to -0.06)			0.66
Overall	-0.14 (-0.18 to -0.10)	•		

- Finding associations between screen use and child language skills
- Systematic review and metaanalysis including 38 primary studies (18 313 participants).
- Significant and negative combined effect size: r = -0.14 (95% CI, -0.18 to -0.10).
- Greater quantity of screen use was associated with lower child language.

SCREEN USE AND SCHOOL READINESS

US population-based study including 9,323 children aged 3-5 years, using data from the National Survey of Children's Health.

Investigated the relationship between media use and school readiness, while controlling for demographic and socio-contextual factors.

Small but significant linear association between screentime and child self-regulation and social-emotional skills, but less so for early learning skills.

Original Article

A Population-Based Study of Associations Among Child Screen Media Use, Social-Contextual Factors, and School Readiness

Shayl F. Griffith, PhD, Yuxi Qiu, PhD

ABSTRACT: Objective: Results of studies examining relations between child media use and school readiness have been inconsistent. Importantly, studies often focus on a single outcome domain (e.g., academic, social, or behavioral), making the comparison of relative importance difficult; fail to account for confounding variables; and fail to investigate social-contextual moderators. This study investigated relations among child media use exposure, social-contextual factors, and multiple domains of school readiness in preschool-aged children. Methods: Multivariate regression analyses were used to examine relations between child media use and 3 domains of school readiness (early learning, social-emotional skills, and self-regulation), controlling for demographic and social-contextual factors, and to investigate differential susceptibility by examining family income and 4 social-contextual factors (sleep, exposure to adverse childhood events, frequency of shared reading, and parent stress) as moderators in a large US population–based sample (N = 9323) of 3 to 5 year olds. Results: After controlling for confounding variables, higher screentime was negatively related to children's social-emotional skills and self-regulation, but less so for early learning. Effect sizes were small. The relation between screentime and self-regulation was significantly moderated by family income, such that the relation was stronger for children from low-income backgrounds. No other evidence of significant moderation was found. Conclusion: Results add to evidence that the relation between screen media use and outcomes in young children is likely complex. Future work should prioritize examining impacts of screen media use on social and behavioral functioning to further inform the evaluation of relative benefits and costs of child screen media use.

U Dev Behav Pediatr 43:529-536, 2022) Index terms: screentime, school readiness, differential susceptibility to media, media use.

Family income moderated the relation between screentime and self-regulation, such that the relation was stronger for children from low-income backgrounds.

Family income had no moderating effect on early learning or social-emotional skills.

In addition, no evidence of a moderating effect of sleep, reading, exposure to adverse childhood experiences (ACEs), or parent stress was found.

SCREEN TIME AND THE HOME LEARNING ENVIRONMENT

- We are still building the evidence base on the effect of screen time on school readiness and child development.
- We know that screens are becoming an even more common feature of the home learning environment.
- Do we need to do more to help parents use screens safely and effectively with their children?

HOME LEARNING INTERVENTIONS ON THE EVIDENCE HUB

<u>ParentChild+</u>: name begins A - H

<u>Parents as First Teachers</u>: name begins I - P

Raising Early Achievement in Literacy: name begins Q - Z

Ê

Please answer these questions:

- 1. What is the level of need is the intervention designed for (how is it targeted)?
- 2. What is the mechanism (theory of change) of the intervention?
- 3. What are the outcomes which the intervention is expected to support?
- 4. What rating does the intervention have?
- 5. What is the evidence which supports this intervention? How many studies, and what types are they (RCT, QED)?

WHAT LEVEL OF NEED: TARGETING FAMILIES WHO

Specialist Targetedindicated Targetedselected Universal

NEED SUPPORT

- Depending on the local area, we know up to 40% of children will be living in disadvantaged communities.
- There is strong and consistent evidence showing that evidence-based early years interventions can prevent income-related learning gaps when they are offered selectively to families on the basis of income.
- A primary aim of these interventions is to help parents understand the learning needs of their young child and scaffold their learning needs appropriately.
- These interventions place a strong emphasis on parent-child interaction. For example, by increasing parents' awareness of their child's ZPD and providing them with strategies for scaffolding within it.

FEATURES OF EFFECTIVE HLE INTERVENTIONS

The scaffolding which parents provide to children in their early years influences long term learning outcomes.

Low-income parents are more likely to experience challenges in supporting their child's learning needs.

Low-income parents are supported to improve their scaffolding skills. Parents are better able to meet their child's early learning needs and provide an enriching HLE Income-related learning gaps are reduced, and children are more likely to reach their school readiness milestones.

Children are ready to learn when they reach primary school and able to achieve more once they are there.

FEATURES OF EFFECTIVE HLE INTERVENTIONS

- Sufficiently **intensive** (at least once or twice a month, for between 1 and 2 hours).
- Offered **early** (before the age of 3 and ideally in the first year).
- Delivered for a year or more.
- Offered through **home-visiting** to individual families.
- Practitioners are qualified teachers.

- Support is **tailored** and includes coaching, homework assignments and feedback.
- Advice provided is within the **parents' ZPD** and appropriate for the **child's ZPD**.
- Parents are encouraged to see the world from the **child's perspective**.
- Advice is developmentally sequenced.

BIBLIOGRAPHY

- Asmussen, K., Law, J., Charlton, J., Acquah, D., Brims, L., Pote, I. & McBride, T. (2018). Key competencies in early child development: Things, People, Numbers and Words. *The Early Intervention Foundation*.
- Bradley, R. (2002). Environment and Parenting. In M. Bornstein (Ed.) *Handbook of parenting*, 2nd Ed. Hillsdale, N. J.: Lawrence Erlbaum Associates
- Department for Education. (2018). Improving the home learning environment. *UK Government*. Retrieved from: https://assets.publishing.service.gov.uk/media/5f6753d1d3bf7f72361877f6/Improving the home learning environment.pdf
- Hillman, J., & Williams, T. (2015). Early years education and childcare: lessons from evidence and future priorities. London: Nuffield Foundation.
- Kucirkova, N., Dale, P. S., & Sylva, K. (2018). Parents reading with their 10-month-old babies: key predictors for high-quality reading styles. *Early Child Development and Care*, 188(2), 195-207.
- Little, S. (2020). Whose heritage? What inheritance?: Conceptualising family language identities. *International Journal of Bilingual Education and Bilingualism*, 23(2), 198-212.
- Melhuish, E., et al. (2008) Effects of the Home Learning Environment and Preschool Center Experience upon Literacy and Numeracy Development in Early Primary School. Journal of Social Issues, Vol. 64, No. 1, 2008, pp. 95--114
- Ofcom. (2025). Children and Parents: Media Use and Attitudes Report. Retrieved from: https://www.ofcom.org.uk/siteassets/resources/documents/research-and-data/media-literacy-research/children/childrens-media-use-and-attitudes-report-2025/childrens-media-literacy-report-2025.pdf?v=396621
- Prior, M. Bavin, E., and Ong, B. (2011). Predictors of school readiness in five- to six-year-old children from an Australian longitudinal community sample, *Educational Psychology*, 31, 3–16
- Taggart, B., Sylva, K., Melhuish, E., Sammons, P., & Siraj, I. (2015). Effective pre-school, primary and secondary education project (EPPSE 3-16+), 50. Retrieved from: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/455670/RB455_Effective_pre-school_primary_and_secondary_education_project.pdf.pd
- Tamis-LeMonda, C. S., Luo, R., McFadden, K. E., Bandel, E. T., & Vallotton, C. (2017). Early home learning environment predicts children's 5th grade academic skills. *Applied Developmental Science*, 23(2), 153–169. https://doi.org/10.1080/10888691.2017.1345634
- Snow, C. E. (1972). Mothers' speech to children learning language. *Child development*, 43, 549–565
- Sullivan, A., Moulton, V. & Fitzsimons, E. (2017). The intergenerational transmission of vocabulary. *Centre for Longitudinal Studies*. Working paper 2017/14.